Numerical solution of the reaction-advection-diffusion equation on the sphere
نویسنده
چکیده
A finite volume algorithm for the solution of the reaction–advection–diffusion equation on the sphere is derived and evaluated using analytical solutions. The proposed approach is based on the principle of semidiscretization. The convective and diffusive fluxes are approximated first, and then the resulting set of the ordinary differential equations (ODEs) is solved using the appropriate time stepping algorithm. In the first part of the paper, solutions to both the linear advection and the advection–diffusion problems for a single conservative scalar are discussed. The monotonicity of the scheme is achieved with the explicit adaptive dissipation. The development as well as the selected applications of the method are illustrated using a finite volume mesh constructed on the basis of geodesic icosahedral grid, which, in the past 40 years, has been frequently applied in different models of geophysical fluid dynamics. The performance of the solver is assessed using a suite of standard tests based on solid body rotation for different initial conditions. After analysis of the advection–diffusion problem, the extension of the method for the equations with reactive terms is presented. The performance of the solver is assessed by comparing the results to the analytical solution of the linearized reaction–diffusion system. In the final part of the paper, the application of the solver for studies of nonlinear reactions on the sphere is illustrated. The main intended application of the proposed method includes the simulation of transport of chemical constituents in the Earth s atmosphere as well as the forecasting of moisture and cloud water fields in numerical weather prediction and climate models. 2005 Elsevier Inc. All rights reserved.
منابع مشابه
Positivity-preserving nonstandard finite difference Schemes for simulation of advection-diffusion reaction equations
Systems in which reaction terms are coupled to diffusion and advection transports arise in a wide range of chemical engineering applications, physics, biology and environmental. In these cases, the components of the unknown can denote concentrations or population sizes which represent quantities and they need to remain positive. Classical finite difference schemes may produce numerical drawback...
متن کاملGalerkin Method for the Numerical Solution of the Advection-Diffusion Equation by Using Exponential B-splines
In this paper, the exponential B-spline functions are used for the numerical solution of the advection-diffusion equation. Two numerical examples related to pure advection in a finitely long channel and the distribution of an initial Gaussian pulse are employed to illustrate the accuracy and the efficiency of the method. Obtained results are compared with some early studies.
متن کاملPreconditioned Generalized Minimal Residual Method for Solving Fractional Advection-Diffusion Equation
Introduction Fractional differential equations (FDEs) have attracted much attention and have been widely used in the fields of finance, physics, image processing, and biology, etc. It is not always possible to find an analytical solution for such equations. The approximate solution or numerical scheme may be a good approach, particularly, the schemes in numerical linear algebra for solving ...
متن کاملNumerical Solution of Caputo-Fabrizio Time Fractional Distributed Order Reaction-diffusion Equation via Quasi Wavelet based Numerical Method
In this paper, we derive a novel numerical method to find out the numerical solution of fractional partial differential equations (PDEs) involving Caputo-Fabrizio (C-F) fractional derivatives. We first find out the approximation formula of C-F derivative of function tk. We approximate the C-F derivative in time with the help of the Legendre spectral method and approximation formula o...
متن کاملSpace-time radial basis function collocation method for one-dimensional advection-diffusion problem
The parabolic partial differential equation arises in many application of technologies. In this paper, we propose an approximate method for solution of the heat and advection-diffusion equations using Laguerre-Gaussians radial basis functions (LG-RBFs). The results of numerical experiments are compared with the other radial basis functions and the results of other schemes to confirm the validit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comput. Physics
دوره 213 شماره
صفحات -
تاریخ انتشار 2006